RAMAKRISHNA MISSION VIDYAMANDIRA

Belur Math, Howrah – 711 202

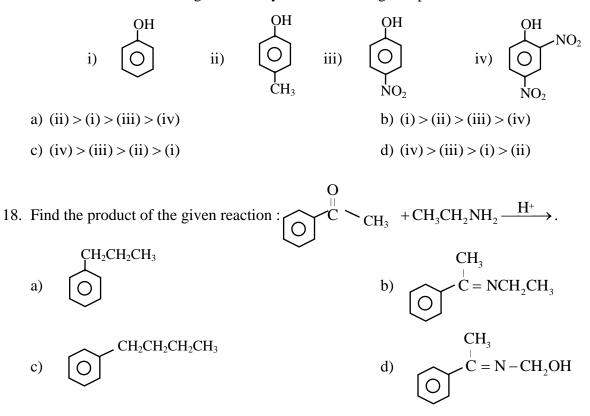
ADMISSION TEST – 2018

INDUSTRIAL CHEMISTRY (Honours)

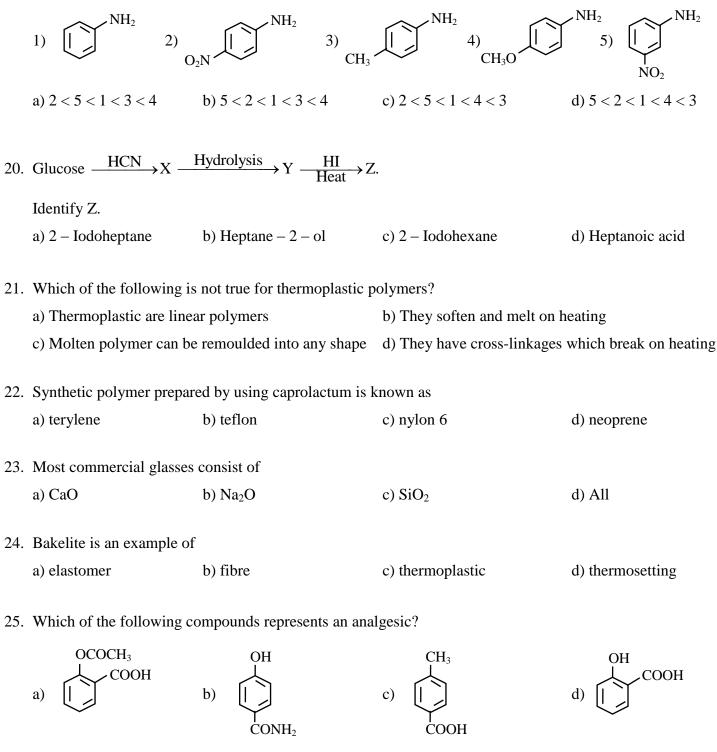
Date : 18-06-2018

Full Marks : 50

Time: 03.00 p.m - 4.00 p.m.


Instructions for the candidate

Answer all the questions given below. Each question carries 2 marks for correct answer and -1 mark for wrong answer. Tick (\checkmark) the correct option in the <u>OMR SHEET</u>. The tick must be very clear — if it is smudgy or not clear, no marks will be awarded. Calculator is not allowed.


1.	How much mass of Sodium acetate is required to make 250 ml of 0.575 molar aqueous solution—					
	a) 11·79 gm	b) 15·38 gm	c) 10·81 gm	d) 23·35 gm		
2.	Two electrons present in M shell will differ in					
	a) principal quantum number		b) azimuthal quantum number			
	c) Magnetic quantum number		d) Spin quantum number			
3.	Arrange the following in order of increasing dipole moment : H_2O , H_2S , BF_3 .					
	a) $BF_3 < H_2S < H_2O$	b) $H_2S < BF_3 < H_2O$	c) $H_2O < H_2S < BF_3$	d) $BF_3 < H_2O < H_2S$		
4.	How many number of moles of nitrogen will be present in $2 \cdot 24$ L of nitrogen gas at STP?					
	a) 9·9	b) 0·099	c) 0.001	d) 1.00		
5.	For the reaction : $H_2(g) + Cl_2(g) \rightarrow 2HCl$; $\Delta H = -44Kcal$. What is the enthalpy of decomposition of					
	a) +44 Kcal/mol	b) –44 Kcal/mol	c) –22 Kcal/mol	d) +22 Kcal/mol		
6.	The complex ion which has no d-electrons in the central metal atom is					
	a) [MnO ₄] ⁻	b) $[Co(NH_3)_6]^{3+}$	c) $[Fe(CN)_6]^{3-}$	d) $[Cr(H_2O)_6]^{3+}$		
7.	What will be the order of decreasing reducing nature for the given metals?					
	a) $Zn > Na > Fe > Mg > Cu > Ag$		b) $Cu > Fe > Mg > Zn > Na > Ag$			
	c) $Ag > Cu > Fe > Zn > Mg > Na$		d) Na > Mg > Zn > Fe > Cu > Ag			
8.	8. If the radius of an octahedral void is r and radius of atom in close packing is R, the relation be R is					
	a) $r = 0.414R$	b) $R = 0.414r$	c) $r = 2R$	d) $r = \sqrt{2}R$		
9.	The edge length of fcc cell is 508 pm. If radius of cation is 110pm, the radius of anion is					
	a) 110 pm	b) 220 pm	c) 285 pm	d) 144 pm		
10.	What amount of $CaCl_2$ (i 27°C?	i = 2.47) is dissolved in 2 li	tres of water so that its osmo	tic pressure is 0.5 atm at		
	a) 3·42 g	b) 9·24 g	c) 2·834 g	d) 1.820 g		

11.	11. For the cell reaction : $2Cu^+(aq) \rightarrow Cu(s) + Cu^{2+}(aq)$, the standard cell potential is 0.36 V. The equilibrium constant for the reaction is							
	a) $1 \cdot 2 \times 10^6$	b) $7 \cdot 4 \times 10^{12}$	c) $2 \cdot 4 \times 10^6$	d) 5.5×10^8				
12.	The overall rate of reaction	on is governed by						
	a) the rate of fastest intermediate step		b) the sum total of the rates of all intermediate steps					
	c) the average of the rates of all intermediate steps		d) the rate of slowest intermediate step					
13.	The activity of an enzyme becomes ineffective							
	a) at low temperature		b) at atmospheric pressure					
	c) at high temperature		d) in aqueous medium					
14.	Which of the following metals cannot be obtained by reduction of its metal oxide by aluminium?							
	a) Cr	b) Mn	c) Fe	d) Mg				
15.	Arrange the following in decreasing Lewis acid strength : PF ₃ , PCl ₃ , PBr ₃ , PI ₃							
	a) $PI_3 > PBr_3 > PCl_3 > PF_3$		b) $PF_3 > PCl_3 > PBr_3 > PI_3$					
	c) $PCl_3 > PBr_3 > PI_3 > PI_3$	F ₃	d) $PBr_3 > PI_3 > PF_3 > PCl_3$					
16.	$(CH_3)_3C - CH_2OH \xrightarrow{Conc. H_2SO_4} X$; In the reaction, X is							
	a) $(CH_3)_2 C = CHCH_3$		b) $CH_3C \equiv CH$					
	c) (CH ₃) ₂ CHCH ₂ CH ₃		d) $CH_3 - CH_2 - C = CH_2$ CH_3					
			CH ₃					

17. The correct order of strength of acidity of the following compounds is

19. The correct order of increasing basic nature of the following bases is

